Enhancement of catalytic performance in asymmetric transfer hydrogenation by microenvironment engineering of the nanocage.
نویسندگان
چکیده
Ru-TsDPEN confined in the nanocage with an amphiphilic microenvironment can be ten times more active than that with a hydrophobic one in the transfer hydrogenation of acetophenone in HCOONa-H(2)O, which is mainly due to the enhanced diffusion rates of reactants during the catalytic process.
منابع مشابه
Nickel Hydrogenation Composite Catalysts Modified by Zirconium in Competitive Benzene Hydrogenation: Effect of Modifiers
A co-impregnation method was applied to the Ni/Zr-HMS/HZSM-5 catalyst (with various amounts of zirconium) during the hydrogenation of benzene. The physicochemical properties of the prepared nickel catalyst were characterized using X - ray diffraction, X - ray fluorescence, Fourier transform infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, temperature-programmed desor...
متن کاملEnhancement Performance New Generation of CPU Cooling System Using Water-AL2O3 Nanofluid
By increase in the power of computer systems and enhanced power of the components and their temperature, including the central processing unit (CPU), cooling just by the air is not effective and there is need for more powerful systems to cool down and increase the power of the cooling system. In this article simulation of the heat exchanger material of the fluid cooling system has been studied ...
متن کاملAsymmetric transfer hydrogenation over Ru-TsDPEN catalysts supported on siliceous mesocellular foam.
A siliceous mesocellular foam-immobilized Ru-TsDPEN complex exhibited excellent catalytic reactivity, enantioselectivity and reusability in the asymmetric transfer hydrogenation of an imine and ketones.
متن کاملCatalytic Effect of Metal Species on Enhancement of CO2 Gasification Reactivity of Biomass Char
In the Boudouard reaction, where CO2 is reacted with carbon (char) to produce CO, very high temperatures are required to shift the equilibrium towards CO production. This endothermic reaction is inherently slow and catalytic species are effective to speed up the reaction rate at temperatures below 900 °C. In this study, the catalytic effect of some alkali (K, Na), alkaline earth (Ca) and transi...
متن کاملCFD Simulation of Porosity and Particle Diameter Influence on Wall-to-Bed Heat Transfer in Trickle Bed Reactors
Wall-to-bed (or wall-to-fluid) heat transfer issues in trickle bed reactors (TBR) has an important impact on operation and efficiency in this category of reactors. In this study, the hydrodynamic and thermal behavior of trickle bed reactors was simulated by means of computational fluid dynamics (CFD) technique. The multiphase behavior of trickle bed reactor was studied by the implementation of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 46 43 شماره
صفحات -
تاریخ انتشار 2010